‘Beads on a String’ Structures and Extensional Rheometry using Jet Break-up
نویسندگان
چکیده
1. Introduction: Surface tension driven break-up of cylindrical fluid elements into droplets plays a crucial role in the use or processing of many multicomponent complex fluids like paints, inks, insecticides, cosmetics, food, etc [1, 2]. These industrial fluids are typically formulated using dilute polymer solutions, and are exposed to a wide range of shear and extension rates. Since the polymer solutions and the resulting dispersions have low viscosity and short relaxation times, their non-Newtonian behavior is not apparent in the conventional rheometric measurements. However, the presence of even a dilute amount of polymer alters the character of capillary break-up during dripping, jetting and thinning of a stretched liquid bridge [2]. In all three scenarios (sketched in figure 1), the presence of polymers leads to a delayed pinch-off. The interplay of capillary, inertial, elastic and viscous effects on small length and time scales typically leads to complex dynamics in a necking fluid thread and in some cases, the extensional stresses generated in the neck lead to formation of very thin and stable filaments between drops, or to 'beads-on-a-string' structure [2, 3]. In a capillary-thinning extensional rheometry experiment (or CABER test), the self-thinning of liquid bridge of a viscoelastic fluid follows the elasto-capillary scaling R / R 0 ~ exp t 3
منابع مشابه
Studying the E↵ects of Elongational Properties on Atomization of Weakly Viscoelastic Solutions Using Rayleigh Ohnesorge Jetting Extensional Rheometry (ROJER)
The extensional rheological properties of dilute polymer solutions play a dominant role in many commercial processes such as air-assisted atomization. This is a high deformation rate process important in application of diverse materials such as paints, fertilizer sprays and delivery of airborne drugs. Dilute polymeric solutions which have identical values of high shear-rate viscosity (HSV) ofte...
متن کاملThe rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer.
Cellulose derivatives containing associating hydrophobic groups along their hydrophilic backbone are used as rheology modifiers in the formulation of water-based spray paints, medicinal sprays, cosmetics and printable inks. Jetting and spraying applications of these materials involve progressive thinning and break-up of a fluid column or sheet into drops. Strong extensional kinematics develop i...
متن کاملIterated Stretching, Extensional Rheology and Formation of Beads-on-a- String Structures in Polymer Solutions
The transient extensional rheology and the dynamics of elastocapillary thinning in aqueous solutions of polyethylene oxide (PEO) are studied with high-speed digital video microscopy. At long times, the evolution of the thread radius deviates from self-similar exponential decay and competition between elastic, capillary and inertial forces leads to the formation of a periodic array of beads conn...
متن کاملCapillary Break-up Rheometry of Low-Viscosity Elastic Fluids
We investigate the dynamics of the capillary thinning and break-up process for low viscosity elastic fluids such as dilute polymer solutions. Standard measurements of the evolution of the midpoint diameter of the necking fluid filament are augmented by high speed digital video images of the break up dynamics. We show that the successful operation of a capillary thinning device is governed by th...
متن کاملExtensional opto-rheometry with biofluids and ultra-dilute polymer solutions
Complex fluids containing long polymer chains exhibit measurably large resistance to stretching or extensional flows, due to additional stresses generated by the extensional deformation of the underlying fluid microstructure. Understanding and quantifying the response of such elastic fluids to extensional flows is necessary for optimizing fluid composition for technological applications like in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010